
 Simple Protocol for SRMs
Protocol #4
Sep 26, 1990

For VME Local Station communications with the SRM arcnet nodes, a choice of
protocol must be made. One can use an existing protocol already known to the
Local Station, or one can invent a new one designed for the purpose. This
option—called “#4” in our informal discussions due to the existence of support
already for the Classic, D0 and Accelerator protocols—should be simple, or it
would not be worth the effort. An idea for a suitable protocol is explored in this
note.

As an aid to get started, assume we use the Acnet header as a basis for a simple
protocol design. It is well-known around the accelerator division and provides
for expandable and generic task-to-task communications. It allows both one-shot
and repetitive replies to generic requests. For reference, its layout is repeated
here:

src
lan

dst
lan

src
node

dst
node

flags msgType

status

srcTId

msgId

msgLng

dst 
task 
name

The msgType can be a Request, a Reply, or a USM (unsolicited message). The
Request demands a reply. The USM demands no reply. The destination task
name for a request or USM allows designing a large number of non-interfering
protocols, since only the tasks involved in the communication must understand
the protocol used in the rest of the message beyond the header. The source taskId
provides for routing the reply back to the requester. Multiple requests between
tasks are distinguished by the msgId. The msgLng gives the entire message
length including the Acnet header (18 bytes) itself. A flag bit in the msgType byte
indicates whether a request expects a single reply or multiple replies. Network
Layer software supports the use of the Acnet header to provide the task-to-task
communications. A task connects to the network to announce its support for
handling requests destined for a given destination task name and provides a
message queue that enables it to receive such requests and any replies to its own



Simple Protocol for SRMs Sep 26, 1990 page 2
operating system kernel.)

Additional items needed in a simple message protocol for data requests and
settings are a message type (beyond the generic msgType mentioned above), a
device index and either the #bytes of data requested or the setting data.

Consider the following layout for a data request and reply:

2x type

index

#bytes req'd

0x type

status

reply data

The value of “x” is the length of the index value. This would be 2 for channel or
bit numbers and 4 for memory addresses. The type byte can denote analog data,
binary status or memory data. The reply can include the same value used in the
request.

Consider the following formats for a setting and its acknowledgment:

3x type

index

#bytes data

1x type

status

setting data

Again the “x” nibble gives the size of the index value. The #bytes of setting data
is included in order to allow grouped settings. Without this consideration, it can
be inferred from the msgLng word in the header.

Whether support for this simple protocol is worth the effort is yet to be decided.


